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The Narasimhan—Seshadri theorem for
parabolic bundles: an orbifold approach

By E. B. NASATYR't AND B. STEER?

! Peterhouse, Cambridge CB2 1RD, UK
2Hertford College, Ozford OX1 3BW, UK

Given a stable parabolic bundle over a Riemann surface, we study the problem of
finding a compatible Yang—Mills connexion. When the parabolic weights are rational
there is an equivalent problem on an orbifold bundle. When the weights are irrational
our method is to choose a sequence of approximating rational weights, obtain a
corresponding sequence of Yang-Mills connexions on the resulting orbifold bundles
and obtain the solution as the limit of this sequence: we need to consider mildly
singular connexions which locally about a marked point take the form d — Aidf + a.
Here ) is a constant diagonal matrix whose entries depend on the weights and their
rational approximations, § = arg(z) for z a local uniformizing (orbifold) coordinate
centred on the marked point and a is an L? connexion matrix. In this context we
find all the necessary gauge-theoretic tools to prove the theorem, including a version
of Uhlenbeck’s weak compactness theorem, provided || is sufficiently small. (One of
the advantages of this approach is that we do analysis on a compact orbifold rather
than on the punctured surface.) Our methods also allow us to consider the analogous
problem for stable parabolic Higgs bundles.

1. Introduction

In this paper we prove a version of the Narasimhan-Seshadri theorem for stable
parabolic bundles. The correspondence between stable parabolic bundles and rep-
resentations of the fundamental group of the punctured surface (with prescribed
holonomy around the punctures) is due to Mehta & Seshadri (1980) (though only
in the case g > 2). Analytical proofs in terms of Yang-Mills connexions have been
obtained recently, first by Biquard (1991, théoréme 2.5) and subsequently by Poritz
(1993); however, the theorem admits conjectural generalizations, e.g. to higher di-
mensions (Kronheimer & Mrowka 1993), with important potential applications and
we hope that our proof will offer new insights into these problems. We also follow
Hitchin (1987) and Simpson (1988, 1990) (as well as the preprint of Konno (1992),
of which we have only recently become aware) in considering the extension of the
problem to stable parabolic Higgs bundles.

Let M be a Riemann surface and let ¥ — M be a smooth complex vector bundle.
We say that F' is a weighted bundle if ‘weighted flags’ are given in the fibres I}, for a
finite set of ‘marked points’ py,...,pq € M. The addition of a holomorphic structure
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138 E. B. Nasatyr and B. Steer

on F' makes it a parabolic bundle. There are notions of weighted or parabolic degree
and of stability for parabolic bundles, involving the weighted flags. These ideas are
due to Mehta & Seshadri (1980); see §2 for further details.

Now suppose that F' is given a Hermitian metric and M a Riemannian metric.
Then the Narasimhan—Seshadri theorem (in a version due to Donaldson (1983))
gives, on F', a correspondence between stable holomorphic structures (modulo auto-
morphisms) and irreducible Yang-Mills connexions (modulo gauge transformations).
In the context of weighted bundles and parabolic structures it is not immediately
clear what notions of ‘weighted Hermitian metric’ and ‘weighted unitary connexion’
are necessary to generalize the theorem. For instance, since the parabolic degree
is not, in general, an integer weighted unitary connexions must certainly be singu-
lar at the marked points for a Chern—Weil formula to hold. Moreover, according to
Mehta & Seshadri, stable parabolic structures correspond to unitary representations
of m (M \ {p1,...,pa}) with the value on small loops around the punctures deter-
mined by the weights so that our weighted unitary connexions should have holonomy
around the marked points and our solutions be projectively flat. Appropriate defini-
tions were given in Biquard (1991) and are given in §2: a weighted Hermitian metric
is degenerate at a marked point; a weighted unitary connexion has smooth (0, 1)-part
but singular (1,0)-part there.

We can now state our main theorem as follows.

Theorem 2.1. Suppose that M is a Riemann surface with a Riemannian metric
and that F — M is a Hermitian weighted bundle with a given stable parabolic
structure. Then there exists a weighted automorphism of F', unique modulo weighted
gauge transformations, taking the weighted connexion of the parabolic structure to
a Yang—Mills weighted connexion.

We are also able to show that near a marked point a Yang-Mills weighted con-
nexion takes a particularly simple form in a radial gauge (proposition 2.2).

Now, when the weights of F' are rational there is an orbifold bundle F (see §3a
for a brief discussion of orbifold bundles or ‘V-bundles’) with orbifold structure at
the marked points such that stable parabolic structures on F' correspond to stable
holomorphic structures on F. (The construction of F from F proceeds via a holo-
morphic clutching around the marked points.) Moreover, the Narasimhan—Seshadri
theorem for V-bundles is comparatively straightforward. These results are originally
due to Furuta & Steer (1992) (independently to Boden (1991)) and are discussed
in §3b. Thus, in the case when the weights are rational, stable parabolic structures
on F' correspond to Yang—Mills connexions on the associated V-bundle F. However,
this doesn’t solve the problem of producing a Yang-Mills weighted connexion on F'
(the passage from F to F' is singular at the marked points) nor of dealing with the
case of irrational weights. (In the case when the weights are irrational, Mehta &
Seshadri showed that for many purposes it suffices to consider a set of sufficiently
close rational weights to study the moduli of stable parabolic structures on F. Nev-
ertheless, the rational case is certainly not sufficient, e.g. to discuss the total moduli
space when the weights are allowed to vary.)

The main idea of our proof is that when the weights of I are irrational we can still
consider a V-bundle F (constructed by a weighted unitary clutching construction)
associated to a set of sufficiently close rational weights. Now we will have to consider
connexions on F' with mild singularities at the orbifold points: we define a connezion

Phil. Trans. R. Soc. Lond. A (1995)
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The Narasimhan—Seshadri theorem for parabolic bundles 139

with model singularity on F to be one which is locally like

€1 0
d— idf + a, (1)
0 €

where the ;s are determined by the differences between the given irrational weights
and their rational approximations and a is a smooth (or, more generally, L?) endomor-
phism-valued 1-form. (Here 6 = arg(z), where z is a local uniformizing, or orbifold,
coordinate centred on the marked point.) Eventually we will also allow the ¢;s to
vary. The details of this are in §4a.

There is a simple idea which allows us to do analysis despite these model singu-
larities: although d@ is singular at the marked point, if the off-diagonal terms of the
connexion matrix a have sufficient vanishing there then the operator a — [a,df)] is
bounded from L? to L? and we can estimate its norm. Our connexions will satisfy
these vanishing conditions because of the orbifold structure. Thus, for instance, we
can show that the curvature of (1) is L?. Analogous arguments show that the usual
gauge-theoretic machinery applies to these connexions with model singularity: the
relevant results, including versions of Uhlenbeck’s weak compactness theorem, are
proved in §4b and §4 c. (In Biquard (1991) the sophisticated machinery of Lockhart
& McOwen (1985) is invoked to deal with the analytical problems posed by the sin-
gularities at the marked points but the use of V-bundles allows us to use the more
elementary arguments just outlined—in particular we effectively work on compact
surfaces and use ordinary rather than weighted Sobolev spaces.)

Algebraic-geometric information coming from the stability of the parabolic struc-
ture is used to prove that the solution lies in the orbit we started with. In §5a we
show that, although the d-operators of connexions like (1) on F' are singular, they
correspond to holomorphic structures on the weighted bundle F. A comparison of
orbifold and smooth Riemannian metrics and a discussion of local forms of Yang—
Mills connexions around marked points is contained in § 5 b: the main result is that in
a radial gauge, the Yang—Mills equation together with equivariance conditions deter-
mine the connexion completely; proposition 5.6. This is unsurprising as in two real
dimensions Yang—Mills connexions are projectively flat and hence, up to twisting by
orbifold line-bundles, locally trivial. This radial gauge-fixing helps us to simplify the
proof of the main theorem but is not essential; for Higgs bundles one gets slightly
weaker results and we expect that something similar is true in higher dimensions.

At this point all the preliminaries are in place and the theorem is proved in §5c.
For the proof we take a sequence of rational weights approximating the given irra-
tional weights. Each set of rational weights gives us a solution on a certain orbifold
bundle, by the orbifold Narasimhan-Seshadri theorem. Transferring each of these
connexions to F' we get a sequence of Yang-Mills connexions with varying model
singularities and by an appropriate version of Uhlenbeck’s weak compactness theo-
rem (proposition 4.10) we get weak convergence of a subsequence to a connexion of
the required form. The explicit description of the connexion in a radial gauge tells
us that this connexion transfers smoothly back to F' and the resulting connexion is
in the original orbit by stability.

Finally, §6 deals with the analogous problem for parabolic Higgs bundles. The
final result is theorem 2.3: in contrast to the case when there is no parabolic Higgs

Phil. Trans. R. Soc. Lond. A (1995)
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140 E. B. Nasatyr and B. Steer

field we cannot use radial gauge-fixing and the solution weighted automorphism is
only continuously differentiable, not smooth, at the marked points.

Let us briefly recap the contents of the sections. The basic definitions—of parabolic
and weighted bundles, weighted Hermitian metrics, weighted unitary connexions and
parabolic Higgs bundles—are given in §2 together with the statement of the main
results (theorem 2.1, proposition 2.2 and theorem 2.3). The subject of §3 is the
correspondence between parabolic bundles with rational weights and V-bundles: V-
bundles are introduced in §3a and the correspondence itself discussed in §3b.

The core of this paper is §4 where the problem is transferred to the V-bundle F.
The construction of F' and the definition of a connexion with model singularity are
given in §4 a. In §4 b the discussion is widened to allow Sobolev spaces of connexions
with model singularity to be considered: the main estimates which show how the
model singularity is ‘controlled’ by the vanishing conditions at the orbifold points
and most of the usual gauge-theoretic machinery follow, with the weak compactness
results in §4 c.

The penultimate section, §5, contains the proof of the main theorem: §5a gives
preliminary results on the d-operator associated to a connexion with model singular-
ity, §5b is concerned with a comparison of orbifold and smooth Riemannian metrics
and local forms of Yang-Mills connexions around marked points and the proof of
theorem 2.1 is given in § 5 ¢. Finally, §6 deals with parabolic Higgs bundles.

2. Parabolic bundles: definitions and statement of results

In this section we briefly review our basic definitions and state our main theorems.
Throughout this paper M denotes a closed, connected Riemann surface equipped
with a (finite, non-zero) number of distinguished (or ‘marked’) points. For conve-
nience we shall often assume that there is a single marked point p € M (our methods
generalize immediately to more than one marked point but the notation is simplified
by assuming only one).

First we recall the definition of a ‘parabolic bundle’ (Mehta & Seshadri 1980) and
introduce the weaker notion of a ‘weighted bundle.” We give an appropriate definition
of a Hermitian metric on a weighted bundle (cf. Biquard 1991) and of a ‘weighted
unitary connexion’.

Let F be a holomorphic structure on an underlying smooth bundle FF — M. A
quasi-parabolic structure on F is a flag of length m > 1 in the fibre F,

F,=F>F>..DF,DF,1=0. (2)
£ CF F TE

A quasi-parabolic bundle F is a parabolic bundle if there are ‘weights’ attached
to the quasi-parabolic structure; that is, attached to the flag there is a sequence
of weights, 0 < A} < X < --- < X < 1, where m is the length of the flag.
For j = 1,...,m, let p; = dim( j/ 1), the ‘multiplicity’ of the weight \;. Tt is
convenient to write 0 < A\; < Ay < < A < 1 for the weights repeated accordlng
to their multiplicities.

The parabolic degree of a parabolic bundle F is defined by

ParDeg (F) )+ Z wiXN; = ¢ (F) + Z Ai

(where ¢;(F') is the first Chern class, 1nterpreted as an integer degree).

Phil. Trans. R. Soc. Lond. A (1995)
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The Narasimhan—Seshadri theorem for parabolic bundles 141

A basis {ey,...,e} for the fibre at the marked point is said to respect the quasi-
parabolic structure if {e,, 4...qp, +1,--->€} span Fo, {e, +oqp, o415, €} span
F,._1, and so on. An endomorphism 1 of a parabolic bundle is a parabolic endomor-
phism if it respects the quasi-parabolic structure at the marked point. The condition
that 1 respects the quasi-parabolic structure at p amounts to saying that 1, is given
by a block lower-triangular matrix with respect to any basis which respects the quasi-
parabolic structure; i.e. if A; < A; then (1,);; = 0. (Note that this depends only on
the quasi-parabolic structure.)

A holomorphic subbundle F’ of a parabolic bundle F is naturally a parabolic
subbundle; i.e. it naturally inherits a parabolic structure by intersecting the flag
(2) with F} and taking the corresponding weights. Of course the resulting flag may
not be strictly descending; in this case we define the flag using only those Fz’) nE;
(j=1,...,m) for which F;, N F; D F, N Fj 1.

Having defined parabolic subbundles and degrees we have the usual definitions of
stable and semi-stable parabolic bundles.

Parabolic bundles are the basic objects which we want to study but we want to
consider many holomorphic structures on the underlying ‘bundle with weighted flag’
simultaneously; therefore we introduce the notion of a ‘weighted bundle’ as follows.
Define a weighted flag structure on F' — M to be exactly the data at the marked point
required for a parabolic bundle (i.e. a flag (2) with associated weights is required but
not a holomorphic structure). Then F' equipped with a weighted-flag-structure is
a weighted bundle. The weighted degree WeiDeg (F') is defined in exactly the same
way as the parabolic degree. A weighted endomorphism of a weighted bundle is just
a smooth endomorphism of the underlying bundle which respects the flag (i.e. a
weighted endomorphism has the same property—independent of the weights—at the
marked point as a parabolic endomorphism but is not necessarily holomorphic).

Let F' be a weighted bundle of rank [ with weights 0 < Ay < ... < A < 1. We
define a weighted Hermitian metric to be a Hermitian metric over the complement
of the marked point which, in a neighbourhood of the marked point, has the form

|w[? 0
g g, (3)

0 |w|?*

for some weighted automorphism g and in coordinates which respect the flag struc-
ture. (Here w is the local holomorphic coordinate and g* is the conjugate-transpose
of g.) We stress that the quadratic form (3) extends smoothly over the marked point;
it is merely degenerate there. We call a weighted bundle (respectively, a parabolic
bundle) with a weighted Hermitian metric a Hermitian weighted bundle (respec-
tively, a Hermitian parabolic bundle). (Notice that this concept does not depend on
the particular choice of local holomorphic coordinate, w.) Define a weighted gauge
transformation to be a weighted automorphism which preserves the weighted Hermi-
tian metric. Denote the weighted gauge transformations by Gy.i (F') and the weighted
automorphisms by G¢ ., (F).

We can always find a weighted unitary frame (with respect to w), i.e. a frame over
a neighbourhood of the marked point where the weighted Hermitian metric has the

Phil. Trans. R. Soc. Lond. A (1995)
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142 E. B. Nasatyr and B. Steer
‘standard form’,
w0
ho(w) =
0 w2

This notion clearly depends on the particular choice of w. (Genuine unitary frames
exist over the complement of the marked point but we shan’t use them.)

We define a weighted unitary connezion to be a connexion which is smooth and
unitary over the complement of the marked point and such that the associated 0-
operator extends smoothly over the marked point. Of course, this definition auto-
matically gives us the usual correspondence (the ‘Chern correspondence’) between
connexions and holomorphic structures in the presence of a Hermitian metric. Notice
that we do not attempt to describe the singularities in the (1,0)-part of the connex-
ion (since we are not going to be doing analysis on parabolic bundles). It might be
thought that the Gram—Schmidt process could be used to construct ‘nice’ frames in
which these singularities take ‘model’ forms but the Gram—Schmidt process fails for
weighted Hermitian metrics.

We also note that weighted unitary connexions have the two required properties
mentioned in the introduction: there is a Chern—Weil formula (Biquard 1991, propo-
sition 2.9) and the holonomy around the marked point is determined by the weights.

We say that a weighted unitary connexion A is Yang-Mills if its curvature satisfies
Fa = —2niParDeg (F')(x1)I, where ‘+’ denotes the Hodge star of a given Riemannian
metric on M. As in the standard case we look for a Yang-Mills weighted unitary
connexion in the orbit of a stable parabolic structure. Now we state the main theorem.

Theorem 2.1. Suppose that M is a Riemann surface with a Riemannian metric
and that F' — M is a Hermitian weighted bundle with a given stable parabolic
structure. Then there exists a weighted automorphism of F'; unique modulo weighted
gauge transformations, taking the weighted connexion of the parabolic structure to
a Yang—-Mills weighted connexion.

This is essentially Biquard’s theorem (Biquard 1991, théoréme 2.5). However, in
the course of the proof we also show that the Yang—Mills weighted connexion can
also be supposed to take a particularly simple form about the marked point. This
theorem, and the proposition below, are proved in §5.

Proposition 2.2. Let F' — M be a Hermitian weighted bundle and let A be a
weighted unitary connexion on F' which is Yang—Mills with respect to a Riemannian
metric on M, locally like dw ® dw near the marked point. Then there is a weighted
gauge transformation, g, such that g(A) has the form

Al 0
g(A) =d+ o Tmu(F)I(wdw — wdw)
0 Al
locally about the marked point, in a weighted unitary frame.

A parabolic Higgs field on a parabolic bundle F is a (1,0)-form valued endomor-
phism of 7, holomorphic away from the marked point and locally of the form -

qb”(U))dU)/w if Az > )‘j and qb,j(w)dw if >\i < )‘ja

Phil. Trans. R. Soc. Lond. A (1995)
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The Narasimhan—Seshadri theorem for parabolic bundles 143

where the ¢;;s are holomorphic in a holomorphic frame which respects the quasi-
parabolic structure at the marked point. Notice that a parabolic Higgs field is then a
holomorphic parabolic endomorphism with values in £2'°(logr), the sheaf of (1,0)-
forms generated by dw/w: in the language of Simpson (1990) this is a filtered regular
Higgs field (though of a very particular type).

A parabolic bundle together with a parabolic Higgs field is called a parabolic
Higgs bundle. Stability of parabolic Higgs bundles is defined with reference to the ¢-
invariant subbundles only. (See Hitchin (1987) for the original work on Higgs bundles
over Riemann surfaces and Nasatyr & Steer (1995) for the extension to orbifold
Riemann surfaces.)

If F is a Hermitian weighted bundle, A a weighted unitary connexion on F' and ¢
a parabolic Higgs field, holomorphic in the sense that 94¢ = 0, then (A, ¢) is called
a weighted Higgs pair. A weighted Higgs pair is said to be Yang-Mills-Higgs if Fa +
[¢, ¢*] is equal to the Yang—Mills curvature. (Here ¢* is defined as the combination
of taking the adjoint of an endomorphism with respect to the weighted Hermitian
metric and taking the complex conjugate of a (1,0)-form.)

Our main theorem on the existence of Yang—Mills—Higgs pairs is as follows. Notice
that for this theorem we need to consider weighted unitary connexions and parabolic
Higgs fields which are obtained by the action of a weighted automorphism which is
only C! at the marked point.

Theorem 2.3. Suppose that M is a Riemann surface with a Riemannian metric
and that F — M is a Hermitian weighted bundle with a given stable parabolic Higgs
structure. Then there exists a weighted automorphism of F, smooth except at the
marked points where it is C', and unique modulo weighted gauge transformations
with the same regularity conditions, taking the weighted Higgs pair of the parabolic
Higgs structure to a Yang—Mills—Higgs weighted pair.

3. Orbifold and parabolic bundles

In this section we briefly discuss orbifold bundles, or ‘V-bundles’, in §3 a, and the
correspondence between holomorphic V-bundles and parabolic bundles with rational
weights, in §3b. Although none of this material is original a detailed understanding
of it is useful in the sequel.

(a) V-bundles

We start with some brief definitions (see Satake 1956; Scott 1983). By an orbifold
Riemann surface we mean a closed, connected, complex 1-orbifold. We can think
of an orbifold Riemann surface as a Riemann surface together with a finite number
(assumed non-zero) of ‘marked’ points with, at each marked point, an associated
order of isotropy n (an integer greater than one). (As before, we will usually assume
that there is exactly one marked point.) Thus the Riemann surface M with marked
point p becomes the ‘underlying’ surface of an orbifold Riemann surface once we
specify an order of isotropy, n. Such a surface we write M.

Let o denote the standard representation of Z, on C as the nth roots of unity
and D? the open unit disk in C. Because M is an orbifold we think of the marked
point p as having a ‘coordinate neighbourhood’ U modelled on D?/Z,. We can pull-
back the n-fold branched covering D? —— D?/Z, and the action of Z, to obtain

Phil. Trans. R. Soc. Lond. A (1995)
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144 E. B. Nasatyr and B. Steer

U-—U /Z, = U, U is called a uniformizing coordinate neighbourhood. The local
holomorphic coordinate in U is called a uniformizing local coordinate.

For convenience, we will work with a fixed choice of coordinate neighbourhood
of p, U = D?/Z,, and the corresponding uniformizing coordinate neighbourhood,
U =~ D?. The uniformizing local coordinate in U will be denoted by z, with r = |z|
and # = arg(z), and the corresponding local coordinate in U by w = 2". (Notice that
|2]? = |w|*™ is smooth in the orbifold sense.)

Locally near a marked point a complex vector V-bundle, E — M, with fibre C!
has a ‘trivialization’ E|y — (D? x C!)/(¢ x 7), where 7 is an isotropy representation
T : Zn — GL;(C). Then we have by pull-back E\]ﬁ = D? x C! with a Z,-action given
by o x 7. Of course F is smooth (respectively holomorphic) if the transition functions
are smooth (respectively holomorphic); the sections of E over U are defined to be
the smooth (respectively holomorphic) Z,-equivariant sections of E over U.

Similarly, any auxiliary structure which can be defined by a local definition and a
patching condition (e.g. a metric or a connexion) has a V-bundle analogue: on E|y;
we define the structure Z,-equivariantly on E lf] In particular, we will make much

use of (orbifold) Riemannian metrics on M and Hermitian metrics and connexions
on vector V-bundles. The first Chern class or degree of a V-bundle can be defined
using Chern—Weil theory; notice that the degree of a V-bundle is a rational number.
Sobolev spaces and Hodge theory for V-bundles follow in the same way. (See §4b for
comments on Sobolev spaces on orbifolds.)

About the marked point we can always choose a local trivialization of a complex
vector V-bundle which respects the V -structure: that is, if the isotropy representation
is 7 : Z, — GL;(C) then we can choose coordinates so that 7 decomposes as 7 =
oL Go"2@...Po", where, for i =1,...,[, z; is an integer with 0 < z; < n and the
x; are increasing. (The requirement that the z; are increasing means that these are
what are called ‘good’ coordinates in Furuta & Steer (1992).) The z; are called the
isotropy of the V-bundle at the marked point.

(b) Parabolic bundles and V -bundles

The correspondence between holomorphic V-bundles and parabolic bundles with
rational weights relies on a construction which is similar to the construction of a
point bundle on a Riemann surface or an orbifold Riemann surface (Nasatyr & Steer
1995). Let &€ be a holomorphic V-bundle over M with isotropy 1 < 2 < -+ < 1.
Let ¢ : & |[7 = D? x C! be a fixed local holomorphic trivialization which respects the
V-structure. Now define a holomorphic bundle F — M by

F: (5|M\{p}) Us D2 X (Cl,

with the clutching function s given on U by its Z,-equivariant lifting to U which, by
a small abuse of notation, we also denote by s, with

s¢~1: (D2\ {0}) x C' — D? x C! }
L 27 ).

(z, (21, .y21)) — (2™ (27 %2, ..

(4)

Notice that the construction depends on the fixed choice of local uniformizing coor-
dinate z and on the choice of holomorphic trivialization. (In the remainder of this
paper we will also consider an analogous clutching construction involving weighted
unitary frames.)

Phil. Trans. R. Soc. Lond. A (1995)
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Now a holomorphic section of (D? x C')/(c x 7) is given by holomorphic maps

si : D* — C, for i = 1,...,l, equivariant with respect to the action of Z,. The
equivariance condition and Taylor’s theorem together imply that

si(z) = 2"s;(2"), (5)

where s/ is a holomorphic function s, : D* — C. Under the map s defined by (4)
we simply get a section of (D?\ {0}) x C' which is given by the functions s}(w) and
hence extends to a holomorphic section of D? x C!. In other words the map s induces
an isomorphism between the sheaves of germs of holomorphic sections.

In fact F has a natural parabolic structure as follows: working in a local trivi-
alization which respects the V-structure we define weights A\i,..., A\, by A\; = x;/n.
Define a flag in F, = C! according to the distinct isotropies of E, so that the smallest
proper flag space is the eigenspace of C! on which 7 acts like 0% and so on. The cor-
responding quasi-parabolic structure is then given by the image of this flag. With the
weights \; it is clear that F is a parabolic bundle. The correspondence is reversible.

Theorem 3.1. (Furuta-Steer). Let M be an orbifold Riemann surface, with a sin-
gle marked point p with order of isotropy n. Then construction above gives a bijection
between holomorphic V -bundles over M (modulo isomorphism) and parabolic bun-
dles over M, parabolic at p with rational weights of the form x/n (modulo parabolic
isomorphism). Moreover, there is an induced isomorphism of analytic sheaves be-
tween the sheaves of germs of holomorphic sections. The correspondence preserves
subobjects, rank and degree and hence (semi-)stability.

The theorem is more or less obvious from the construction except that we have to
discuss the action of the two automorphism groups near the marked point. If g is an
automorphism of E which makes two holomorphic structures isomorphic then locally
we can take holomorphic trivializations which respect the V-structure and then g is
holomorphic. Hence the corresponding map on F, sgs~!, is also holomorphic (in the
corresponding trivializations), except possibly at the marked point. However, if we
consider the Taylor series for g, we find, analogous to (5),

B T T e
! 2T gl () if & <z,

for holomorphic functions ggj. Conjugating by s we see that the result is not only
holomorphic but the components with z; < z; vanish at the marked point; in other
words sgs~! is a parabolic automorphism. A similar argument shows the converse.

From theorem 3.1 there is a satisfactory correspondence between (semi-)stable
V-bundles and (semi-)stable parabolic bundles, provided the parabolic weights are
rational. Suppose now that we have a weighted bundle F' — M with a set of weights
which are not necessarily rational. The arguments of Mehta & Seshadri (1980, §2)
show that a set of rational weights can be found arbitrarily close to the given weights
and such that

(i) if F is any holomorphic structure on F' then the parabolic bundles defined by
F and the two sets of weights are (semi-)stable or not together and

(ii) if the parabolic structures defined by F and the two sets of weights are semi-
stable then they have precisely the same destabilizing parabolic subbundles.

In many ways this is very satisfactory but we are not much nearer to actually
constructing Yang-Mills (weighted unitary) connexions on parabolic bundles, which
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is the aim of this paper. Even given the correspondence between holomorphic V-
bundles and parabolic bundles with rational weights discussed above it is not en-
tirely straightforward to take a Yang—Mills connexion on a V-bundle and produce a
corresponding Yang—Mills weighted unitary connexion on the parabolic bundle; we
postpone tackling this point until §5b, where we give a discussion which is suffi-
ciently general to apply also in the case of irrational weights (though it is not too
difficult when one recalls that the connexions are flat up to twisting).

4. Connexions with singularities on V-bundles

In this section we will suppose that a Hermitian weighted bundle, possibly with
irrational weights, is given and set up the Narasimhan—Seshadri problem on an ap-
propriate V-bundle by allowing certain types of singular connexion. We introduce
‘connexions with model singularity’ in §4 a, discuss their basic analytical properties
in §4b and prove a version of Uhlenbeck’s weak compactness theorem for them in
84 c.

(a) Connezions with model singularity

If Fis a Hermitian weighted bundle with (possibly irrational) weights Ay,...,\
then we can construct a ‘nearby’ Hermitian V-bundle F, over an orbifold M with
underlying space M, by a unitary variant of the holomorphic clutching construction
given in §3b. Of course this depends on choosing n, the order of isotropy for the
marked point, and zi,...,x;, the isotropy of the V-bundle—we will explain how
these are chosen in §4b. Given the construction of F' we need to define a suitable
space of connexions to work in—the space of ‘connexions with model singularity.’

We fix a weighted unitary frame for F' about the marked point and choose appro-
priate n and z1,...,2;. Then the unitary clutching construction is to clutch to this
fixed frame for F' with the weighted unitary clutching map,

Z—zlrzl—)\ln 0

¢ — : (6)

0 Z—l‘lrxl—)\ln

(Compare (4).) Call the resulting V-bundle Fn;th,zl or simply F. The point of this
clutching construction is that the weighted Hermitian metric on F' pulls-back to a
genuine Hermitian metric on F', as is easily checked, and we will use this metric for
our analysis. Of course, /' comes with a fixed unitary frame about the marked point
which we will use for most of our local calculations. The construction depends on
our fixed choices of local holomorphic coordinate, w, and weighted unitary frame.
Now suppose that in addition a holomorphic structure on F is given. We can
consider a holomorphic frame about the marked point, related to the fixed weighted
unitary frame by a weighted change of frame, gg. The corresponding frame for F
(related to the fixed unitary frame by go = ¢ !got) will no longer be holomorphic
because ¢, unlike s, isn’t meromorphic. However, we can calculate the result of pulling
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The Narasimhan-Seshadri theorem for parabolic bundles 147
the d-operator back to F via t (expressed with respect to this frame):

Xr1 — )\177/ 0
= = .15 = dz
d— 0+t 1(t) =0+ = (7)
Z
0 T — )\m
Applying the Chern construction we obtain a singular connexion which we term the

initial singular connexion and denote Ag.
We sum up the situation in the following commutative diagram.

t

Unitary frame for F . Weighted unitary frame for F'
o go
_‘Singular holomorphic’ frame for F‘, S E— Holomorphic frame for F
O-operator is 0 + (z; — Ain)é;;dz/(2%) ¢

If it happens, improbably, that go = I so that the weighted unitary and holo-
morphic frames coincide, then the connexion associated to the d-operator (7) by the
Chern construction is just

X1 — )\17’1, 0
d— idf.
0 X, — )\m

Although usually go # I we will use this as the model singularity for our connexions
on F.

For a real vector k = (k1,...,K;), with k; = k; if ; = x;, let
K1 0
A, = ido. (8)
0 K

Now fix ¢, = z; — \in and set A = A, with (1,0)- and (0,1)-parts A% and A%'
respectively. Let By be any connexion which is smooth and unitary over the com-
plement of the marked point and near the marked point has the form d — A (in the
unitary frame fixed by the clutching construction). Call By the model connexion. A
connexion with model singularity is then any unitary connexion which differs from By
by something smooth. (It is clear that the definition doesn’t depend on the particular
choice of By.) We will often refer simply to a ‘singular connexion’. (Since singularities
other than the model singularity will occur from §4 b on, we will sometimes use the
oxymoronic term ‘smooth singular connexion’ to emphasize that the connexion is
smooth modulo the model singularity.)

We have defined connexions with the particular singularity that arises out of our
clutching construction (given by €; = x; — A;n): equally, for a fixed local uniformizing
coordinate z and any Hermitian V-bundle with a fixed unitary frame around the

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

A

/

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

OF

.\

4

N
A

TaNsactions | HE ROVAL

SOCIETY

4

OF

Downloaded from rsta.royalsocietypublishing.org

148 E. B. Nasatyr and B. Steer

marked point, we can define connexions with k-singularity or ‘k-singular connexions’
for any k.
For any k we set

nir) = %{Deg(ﬁ‘) - % Z“}

i=1
the ‘slope’ of k-singular connexions; notice that u(e) = WeiDeg (F') /I is the parabolic
slope. Given a Riemannian metric, whether smooth on M, or orbifold on M , We say
that a k-singular connexion A is Yang-Mills (with respect to the given metric) if
Fa = —27ip(k)(x1)1, where ‘«’ denotes the Hodge star of the metric.

—~

Remark 1. For k-singular connexions the Chern—Weil formula

[ tr(Fa) = ~2mitute)
J

is easily proved (Biquard 1991, proposition 2.9). One can also see that any s-singular
connexion has a well-defined limit holonomy around the marked point, depending
only on k.

Remark 2. Notice that the initial singular connexion Ay (the pull-back of the
Chern connexion of a holomorphic structure on F') usually is not a connexion with
model singularity because it differs from By by something which is not smooth. This
difference will, however, have a large number of derivatives (see corollary 4.6) and
so will lie in a suitable Sobolev space.

(b) Analytical properties of singular connexions

We use suitable Sobolev spaces of ‘L? singular connexions,’ both in order to have all
the usual machinery for nonlinear analysis available and because the initial connexion
given by a holomorphic structure is not contained in the space of (smooth) singular
connexions. (We always work on a Hermitian V-bundle over a compact base.) The
analytical estimates of proposition 4.2 and proposition 4.3 show that the singularity
in our connexions is counteracted by vanishing at the marked point, which is implied
by equivariance conditions. We start, however, by explaining how to choose n and the
x;s so that the unitary clutching construction of §4 a has sufficiently good analytical
properties. We could also work with L} singular connexions, for p > 1, but the
estimates in proposition 4.3, which are essential in the sequel (particularly in the
proof of proposition 4.9), follow from the fact that L? is a Hilbert space. Therefore,
with the exception of the more general proposition 4.2 and in § 6, we work with p = 2,
contenting ourselves with a few remarks concerning other values of p.

Let ' — M be a Hermitian weighted bundle. For a given integer ko > 2, we
say that F' = F,,;, . 5 (the V-bundle over M constructed by the unitary clutching
construction in §4 a) is a ko-approzimation to F if n and x, . .., x; have the following
properties:

(i) n satisfies

ko —

ko — 1
On <= Al <1- for all \; # A, (9)

and if any of the A;s are rational then they can be expressed with denominator n;
(ii) the x;/ns have the same pattern of equalities and inequalities as the \;s and
[Ai —x;/n| < 1/2n for all i (10)
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(i.e. the z;/ns are the best possible rational approximations to the \;s with denom-
inator n).

Clearly for any given kg > 2 a kg-approximation to F' exists simply by taking n
large enough and choosing the ;s appropriately. Notice that (9) and (10) together
imply that

ko—2<|z;—azj|<n—ko+2 forall z; #x;. (11)

A ko-approximation to F will then have sufficiently good analytical properties pro-
vided ko is sufficiently large (e.g. see lemma 4.1 or proposition 4.9).

Suppose from now on that Fisa ko-approximation to a Hermitian weighted bundle
F for some kg. In fact we will suppose that ky > 4 and other, less explicit, bounds
on kg will also be introduced in the course of this paper.

Lemma 4.1. If g is a weighted automorphism of F and t is as in (6) then § = t~'gt
is an L  automorphism of the V-bundle F.

Proof. For §;j(2) = gij(z")z% ~ipmAe=2)=(@i=25) 'which clearly satisfies the equiv-
ariance condition and so defines an automorphism of F. Moreover gi; has order at
least n(A\; — A;) in r: in fact if A; > A; then, because g is a weighted automorphism,
gi; must vanish to at least first order in |w| = r", so that the order is actually
n(l+ A; — Aj). If A; = \; then we just have g;;, which is smooth. Otherwise, under
the condition (9), the order in r is strictly greater than ko — 1 and the result follows.

|

Now let A% be the space of L? connezions with model singularity or ‘L? singular
connexions’ on F, i.e. the space of unitary connexions on F which differ from the
base connexion By by something in L2. Let G2 be the group of L3 V-bundle gauge
transformations (i.e. L2 automorphisms of F, fixing the base and preserving the
metric) and (G°)? its complexification (i.e. L2 automorphisms of F', fixing the base).
Notice that lemma 4.1 shows that g is in (G°)?, as we assume ko > 4.

We should emphasize that we are using the standard gauge group for the Hermitian
V-bundle F, which doesn’t depend on the parabolic weights (or, more precisely,
depends on them only to the extent that they determine the choice of F)

We now give some estimates concerning Sobolev spaces of sections of V-bundles.
Sections of a V-bundle are given locally by sections which are equivariant in a local
uniformizing coordinate: Sobolev spaces of sections can then be defined locally by
completing the smooth equivariant sections with respect to a given Sobolev norm.
The equivariance condition means that the smooth equivariant sections of a line V-
bundle with isotropy x will have vanishing (min{z,n — 2} — 1)-jet. (In fact, provided
k < min{x,n — x}, it is easy to see that one gets exactly the same L} Sobolev space
by completing the smooth equivariant sections which are supported away from the
marked point.)

The crucial fact about such L% spaces of sections is that under suitable conditions
the map f ~— f/r is bounded from L¥ — L7 _,. This allows us to to deal with the
model singularity (as |[df| = 1/r) and, for instance, to show that A% is closed under
the natural action of (G°)? and that the initial singular connexion Ag (given by the
holomorphic structure on F') is in A% (see corollaries 4.4, 4.5 and 4.6). The required
estimates are given in the following two propositions. Proposition 4.2 deals with
general p and is included only for completeness; it can be passed over without any
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loss. (The proof is based on the comments of the referees and also owes something
to lemma 3.5 of Kronheimer & Mrowka (1993); we originally gave a proof along
the lines of Biquard (1991, théoréme 1.3), which we found to be less revealing.)
Proposition 4.3 gives simpler proofs of the estimates and necessary additional results,
for the particular case p = 2.

Proposition 4.2. For p > 1 and k > 1, suppose that f is the limit of an L%-
Cauchy sequence of smooth C-valued functions supported within the unit disc, each
obeying an equivariance condition with isotropy x such that min{z,n —z} > k (so
that the (k — 1)-jet vanishes at the origin). Then for non-negative integers i and j
withi+j <k
f

i
™l

< el ) 1fll e,
J

where c(i, j) is a positive constant. Analogous estimates for division by powers of z
and Z also hold.

Proof. The case i = j = 0 is trivial. We consider first the case i = 1, j = 0. Let C,.
be the circle centre the origin of any radius 0 < r < 1. The equivariance condition
implies that f satisfies [ o, Jd8 = 0. Simple integration by parts shows that, on C,,
f is given by a convolution:

1 of

I="500"
(Here and in the rest of the proof, Fubini’s theorem shows that the integral exists
for almost all r € (0, 1].) It follows that

o[22
Cr

6.

dé

r r 00

for p > 1, using Holder’s inequality. Hence

UL

Lof

P 1/p
dé
r 06 )

P 1/p
dér dr)

1 16fp 1/p
<2 291 qgrd
7r</r=0 /c r 00 o T)
L |of
=27 ;% Lp.

Finally, comparing V f to (1/r)0f /00, the result for ¢ = 1, j = 0 follows. Iterating
the above argument shows that

f

pi

10'f

<@ 5 5

)
Lp Lp

which gives the result for any ¢ and j7 = 0.
Now assume inductively that the result holds up to and including j — 1. Applying
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the inductive hypothesis (and suppressing constants) we estimate

i i v /
- < - - -
rt L;’ rt I ri L;ll pritl L§_1
S Allpe + IV Al + 1Nl
i Jt+i—1 Jj+i
<@ ) 1 llpr
J+i
as required. [

Proposition 4.3. For k > 1, suppose that f is the limit of an L?-Cauchy se-
quence of smooth C-valued functions supported within the unit disc, each obeying
an equivariance condition with isotropy = such that min{x,n — z} > k (so that the
(k — 1)-jet vanishes at the origin). Then

(i) for non-negative integers ¢ and j with i+ j < k

f

rt

<d(i, ) 1z,

L?
i

where d(1, j) is a positive constant;

(ii) d(1,0) < 1/ min{z,n — z} and

(iii) the map f — f/r* from equivariant L}, ; functions to equivariant L3 functions
is compact.
Analogous results for division by powers of z and Z also hold.

Proof. We consider the case ¢ = 1, j = 0 first. For almost all fixed r, f is L?
and hence equal to its Fourier series; f =Y. fn(r)e™. By the equivariance

condition f,, =0 for |m| < min{z,n — z} and so we can estimate

f N fm('f') imé
e — ImA e
"2 —oo;<oo r L2
1 Am .
< : Z |m| f (T) elm9
mlnfm¢0{|m|} —oo<m<oo " L2
1 10f
~ min{z,n -z} ||rdd|,,

Comparing V f to (1/r)0f/06, we obtain the estimate for 7 = 1, 7 = 0, including the
claim that d(1,0) < 1/min{z,n — z}. The estimate for any 7 and j follows exactly
as in proposition 4.2.

We will prove compactness in the case i = 1, j = 0, after which the general case
follows immediately. So suppose that {f;}en is a sequence of functions as in the
statement of the proposition, with a universal bound || fi[|z2 < M, for all I € N. Con-

sidering [|(1/7)0f /00| 2 we see that {|lmfe™ /7| 2} 1en is bounded for each fixed
m and so a subsequence converges. Hence by a standard diagonal argument we can

assume that, after passing to a subsequence and relabelling, {|m FiD gimo /7|2 hen
converges for all m.
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Now consider
fit 1 -0 e
r ;2 min{z,n —z} Ty T Lo
1 B = I g
" N ImIZ>N " ’ L2 ’

for any N € N. The second term on the right-hand side is no greater than 2M /N
(using the bound and the triangle inequality) and so can be made arbitrarily small
by taking N sufficiently large. The first term on the right-hand side is a finite sum
of norm-differences in Cauchy sequences and so can be made arbitrarily small by
taking [ and I’ sufficiently large. Hence the sequence {f;/r};en is Cauchy in L2, W

Remark 1. In both cases we could have been more explicit about the constants
involved. However, the case p = 2,4 =1, j = 0 is the only one for which an explicit
estimate will be required in the sequel, as well as being the easiest.

Remark 2. In each case a little juggling allows us to deal with division by non-
integral powers of r: for any y with —k < y < 1 and any non-negative integer j with

vl <j<k+y
I flle < Qb D Il s

where ¢'(p, [y],7) is a positive constant. To see this we simply calculate, suppressing
constants,

72 fllie < D0 M=V £l

a+b<y

< D et
a+b<y

< Z ||f||Lp+b_[ : )
a+b<k+[y] ’ !

using proposition 4.2 or proposition 4.3 for the last line.

Corollary 4.4. Let g be an L} endomorphism of the V-bundle F and a an L?_,
endomorphism-valued 1-form both supported within the D?-neighbourhood of the
marked point. Let A = A, as in (8), with €¢; = x; — \;n. Then the operators

2 2
Ly — Li_,

g+ lg,4]

and
Li—l - Li—2
a v [a, A

are bounded linear maps provided k < ko—1. In the second case, if k = 2 the operator

norm is no greater than 1/(ko — 2). These results hold equally if A is replaced by
AL or A%,
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Proof. First note that

9, Alij = gij(ei — €;)id0.

Since |df| = 1/r the strategy of the proof is to use the estimate for the L? ,-norm
of gij(e; — €;)/r in terms of the L?-norm of g,;(e; — €;) provided by proposition 4.3
(and similarly for a).

The isotropy for the matrix entry g;; is z; — x;. Similarly, writing a = a'° + a%1!,
for a;; we have that a}jo has isotropy z; —x; — 1 and a?jl has isotropy x; — z; + 1.

If €; = ¢; then the operator is identically zero. If not, then z; # z;. Then, by (11),
for g;; we have min{xz,n — z} > ko — 1 and for a;; we have min{z,n — z} > ko — 2.
Also note that |e; — €;| < 1 by (10). Hence, applying proposition 4.3 with j =k — 1
in the first case and j = k — 2 in the second and ¢ = 1, we obtain the result including
the estimate of the operator norm when k = 2. |

The important point about the estimate of the operator norm of a — [a, 4] is that
it can be made arbitrarily small by taking ko large enough; this will be essential for
the proofs of propositions 4.9 and 4.10. The case p = 2 is the only one in which
an estimate depending on kg in this way is immediate—the proof of proposition 4.3
relied on the fact that L? is a Hilbert space—but the interpolation argument of the
Riesz—Thorin convexity theorem (see Ahlfors 1966) shows that, as a function of p,
the operator norm can be supposed continuous at p = 2.

Corollary 4.5. The group (G¢)? of L2 automorphisms of F acts on A% and
connexions in A% have L* curvature.

Proof. Consider first the action of g € (G°)? on A € A%. Using the Sobolev
multiplication lemma we see that it is sufficient to consider g(By) — By; that this
is L? follows immediately from corollary 4.4. The proof that the curvature is L? is
similar. |

Corollary 4.6. If A, is the initial singular connexion on F determined by a
holomorphic structure on F then Ay € A%, ie. Ay is an L? singular connexion.
Moreover, there exists go € (G°)? such that go(Ay) is given by d — A with respect to
the fixed unitary frame about the marked point.

Proof. The only problem here is near the marked point. We work in the unitary
frame fixed by the clutching construction; since we are in a unitary frame it is
sufficient to check only the (0, 1)-part of the connexion. This frame will be mapped
to that corresponding to the holomorphic frame on F by gy = t~'got (where go the
weighted change of frame on F' from the weighted unitary frame to the holomorphic
frame), which is L2 by lemma 4.1. Applying (7) we see that the pulled-back O-
operator is given by 9 + o 1 (0g0) — gy - 4% Go and the second claim is clear. For the
first claim we need to show that

9o " (930) — G5 ' A" Go + A” = 51 (890) — (95", A7)0
is L?; this follows from corollary 4.4 (and the Sobolev multiplication lemma). ]

Remark. Because we will only be interested in the (G¢)?-orbit of Ay we can apply
the second part of the corollary and always suppose that Ay has the form d — A
with respect to the fixed unitary frame. This justifies our definition of the model
connexion By and with Ag in this form we can also suppose that By = Ag.
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(¢) Weak compactness for singular connexions

Now we give a weak compactness theorem for A%, following Uhlenbeck (1982).
As the proof is well known we merely sketch it, drawing attention to the points
where allowances need to be made for the model singularity. The main addition to
Uhlenbeck’s proof is the use of corollary 4.4 to show that ||[a, A]||,. is controlled by
[lal| L2 /(ko — 2). We concentrate on the proof of the local result (Uhlenbeck 1982,
theorem 1.3) in a neighbourhood of the marked point; the global theorem will then
follow in the usual way, provided k is sufficiently large. Since we only intend to apply
the global theorem to sequences of Yang-Mills connexions we only give a version for
sequences such that the L? curvature doesn’t concentrate at points, which is easier
to derive.

The proof of the local result is in rough outline as follows. We want to prove
that in a D?neighbourhood of the marked point all connexions which are in A%
and have sufficiently small curvature in the L?-norm have a certain property. The
proof is to show that the set of all connexions with a given bound on the L?-norm
of the curvature is connected and that the subset of those with the desired property
is non-empty, closed and open, if the bound is small enough. We want to adapt
lemmas 2.5-2.8 of Uhlenbeck (1982): 2.6 and 2.8 generalize immediately and 2.5 and
2.7 exhibit the same subtlety. We have the following version of 2.5 (compare also
Biquard (1991, lemme 1.9)).

Lemma 4.7. There exist constants k and k' (not depending on kg ) such that if a

is an L} skew-Hermitian matrix-valued 1-form over the closed unit disc D? (defined
by the local uniformizing coordinate z) with

d'a=0 and
a, =0 ondD?,
then
lallzs < 4% [ Facavall,

provided ||A| < 1/2k and |a||,. < 1/4kk’. (Here a, denotes the radial component
of a and ||A|| denotes the operator norm of the map a — [a, A], from L? to L?, of
corollary 4.4.)

Proof. Since the boundary condition is elliptic for d @ d* and there is no kernel we
get an elliptic inequality

lallys < k ldall 2 (12)
Calculating the curvature we find
[Fa-atallpz = Idallp: = Illa, Alll 2 = lla Aall L
> (1/k) llall 2 = 141l lall 2 — llall%s
2 {(1/k) = 1Al = ¥ lall .o } a2 -

Here we have used (12), corollary 4.4 and, for the last line, the Sobolev inequality.
It follows that, provided ||A4] < 1/2k, we can obtain the desired estimate: for
instance, if ||a||;. < 1/4kk’ then

HGHL% <4k ||Fd—/1+a||L2 ,
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as required. (The constants arise from elliptic and Sobolev inequalities valid for all
functions, not just equivariant ones, and so are independent of kj.) |

The generalization of lemma 2.7 of Uhlenbeck (1982) follows in exactly the same
way, with the same condition on || 4| and the same constant 1/4kk’. By corollary 4.4,
we know that we can suppose ||A|| is sufficiently small if kg > 2k + 2 and so a local
result follows.

Proposition 4.8. Let k be the constant of lemma 4.7 and suppose that ko >
max{2k + 2,4}. Then there exists a constant ¢ > 0 such that if a’ is an L? skew-
Hermitian matrix-valued 1-form over the closed unit disc D2 (defined by the local
uniformizing coordinate z) with ||Fy_ a4 ||, < c then there exists a gauge transfor-
mation takingd — A+ a' tod — A+ a with

d*a =0,
a, =0 ondD? and
lall s < 4k [|Fa-atall e -

(Here a, denotes the radial component of a.)

Our global result like theorem 3.6 of Uhlenbeck (1982) follows in the standard
way.

Proposition 4.9. Suppose that F is a Hermitian weighted bundle and F' a k-
approximation to F' with ko > max{2k + 2,4}, where k is the constant of lemma 4.7.
Suppose further that {A;},en is a sequence of connexions in Ai(ﬁ’) with the property
that for any x € M there exists a geodesic ball D, such that ||FAJ.X D, || < c for all
sufficiently large j, where c is the constant of proposition 4.8. Then {A;};en has a
subsequence which is weakly convergent in A% modulo L3 changes of gauge.

Remark 1. We have stated the result with reference to the Hermitian weighted
bundle F'. Of course, it is really a result about V-bundles; one simply needs to
replace the fact that F' is a kg-approximation to F' by an estimate on the isotropy
analogous to (11).

Remark 2. The Yang—-Mills equation coupled with radial gauge-fixing and a suitable
equivariance condition determines a connexion matrix completely in a neighbourhood
of the marked point (see §5b). Hence a version of proposition 4.9 for sequences of
Yang-Mills connexions can be proved using radial gauge-fixing around the marked
point, rather than the Coulomb gauge-fixing used in proposition 4.8, to obtain L2-
bounds on connexion matrices.

Remark 3. In order to prove the stronger result that weak convergence holds given
only a uniform L? bound on the curvatures of the sequence one needs also to work
with the L} norm for some p with 4/3 < p < 2. The only problem then is to control
the norm of the map a + [a, 4] from L} to L? but this can be done if p is sufficiently
close to 2 by the comments following corollary 4.4.

We close this section by considering a larger space of connexions in which the model
singularity may vary. Let F' be a ko-approximation to F' with ko > max{2k + 2,4},
as in proposition 4.9. Fix a smooth bump function (r), supported within the D?-
neighbourhood of the marked point. Now the space of connexions which are L? with
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k-singularity for some k € R is just A% x R, with
(AR) =& A+ A, ., (13)

where A, is defined by (8). Of course, we give A% x R the product topology and
we have the obvious action of the gauge group on the right-hand side. (Strictly, there
may be less than | independent parameters for the types of singularity as x; = &; if
x; = x;: we can avoid any additional notation by supposing that, for the remainder
of this section only, | denotes the number of unequal x;s.)

Now we consider weak compactness for .A% x R". Whenever || 4,|| < 1/2k a version
of proposition 4.9 follows for connexions with k-singularity. Moreover, if K is a
compact neighbourhood of ¢ € R! (compactness of K ensures weak compactness of
L?(D?) x K) such that this inequality holds for each k € K then the result holds
even when £ is allowed to vary in K. In fact ||A,|| < 2max; |r;|/(ko — 2) (for the
estimate in corollary 4.4 we simply used (10) to conclude that |¢;| < 1/2) so that K
can be taken to consist of all ks with |x;| < 1/2 for all 4, i.e. K = [~1/2,1/2]". Thus
we have the following more general result.

Proposition 4.10. Suppose that F is a Hermitian weighted bundle and F a k-
approximation to F' with ko > max{2k + 2,4}, where k is the constant of lemma 4.7.
Suppose further that {A;},en Is a sequence of connexions on F corresponding, via
(13), with a sequence in A% x [~1/2,1/2]" and with the property that for any x € M
there exists a geodesic ball D, such that HFA]‘XDz HL2 < c for all sufficiently large j,
where c is the constant of proposition 4.8. Then {A;},cn has a subsequence which is

weakly convergent in A% x [—3, 1]' modulo L3 changes of gauge.

5. The proof of the Narasimhan—Seshadri theorem

In this section we finally prove a version of the Narasimhan—Seshadri theorem
for stable parabolic bundles and weighted unitary connexions. The section starts
with some analytical preliminaries and remarks on the O-operator associated to a
singular connexion on an orbifold M. Next, § 5b is concerned with comparing orbifold
Riemannian metrics on M and smooth Riemannian metrics on M and with local
descriptions of Yang-Mills connexions about the marked point: these results will be
used to pass from a Yang-Mills singular connexion on F' to a Yang Mills weighted
unitary connexion on F', where F' and F' are as in §4. The core of the proof is in
§5 ¢, where we solve the problem for irrational weights on the parabolic bundle by
choosing an approximating sequence of rational weights and solving the problem for
each set of rational weights in turn. Thus we get a sequence of Yang-Mills L? singular
connexions with varying model singularities corresponding to the varying weights on
a kp-approximation to the Hermitian weighted bundle: if kg > max{2k + 2,4} then
we can apply proposition 4.10 to get the result.

(a) Singular O-operators
Any connexion A € A% has an associated J-operator, 94, which we call an L?
0-operator with model singularity or ‘L? singular d-operator’. These operators, being
modeled on & — A%! and not being smooth, do not define holomorphic structures on
F in any obvious way. Since the proof of the theorem requires algebraic-geometric
information about such operators we need to associate holomorphic structures (on
F or F) to them. Compare the following proposition with Biquard (1992).
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Proposition 5.1. Each (G°)?-orbit in A% contains a singular connexion which
takes the form

d—A
in the fixed unitary frame about the marked point.

Proof. We work with the singular d-operator and adapt the proof of the Newlan-
der-Nirenberg theorem given in Atiyah & Bott (1982, §5): first we solve the problem
globally on a particularly simple orbifold Riemann surface and then a patching ar-
gument gives a general, local solution.

The problem is to find an L2 automorphism g such that, in a neighbourhood of
the marked point and with respect to our fixed frame,

5"‘9_1(59) _g—lAO,lg+g—1aO,1g — 5_ /10’1,

for some given L? endomorphism-valued (0, 1)-form, a®!. At least locally, we can
define a mapping O : g — {9g + [g, A%!]}g~!; then the problem is simply to solve
O(g) = a®! (for equivariant g and a®!).

Let M be the orbifold Riemann surface which is CP' with 0 and oo marked with
order of isotropy n. Let L = CP' x C be the trivial complex line-bundle over CP!
and define an action of Z,, by

eZﬂ'i/n(z, Z/) — (621Ti/nz,62m7ri/nzl)’ (14)

for some integer x. Then the quotient L, = L /Z,, is a V-bundle over M. The isotropy
of L, is x at 0 and —x at oo and sections of L, are sections of L (i.e. functions on CP')
equivariant with respect to the Z,-action given by (14). We note that the V-bundle
of (0,1)-forms on M is just L;.

Now we set E = @!_,L,,, which, at 0, is locally like F at the marked point, and
try to solve the problem globally on E. If a solution exists, for ||a®!|| 12 sufficiently
small, then the result follows using a cut-off function, exactly as in Atiyah & Bott
(1982, §5) (although the choice of the cut-off function requires some care). By the
implicit function theorem it suffices to show that the derivative at the identity (on
the L3 endomorphisms of E), D@y, is surjective. Of course E is far from trivial but
its lift to CP!, E, is and we can consider Q as being defined on the equivariant
automorphisms of E, globally over CP'. On E we have DO : h — 0h+ [k, A%]. We
calculate

= (i —€)hiy
{D(")[(h)}w = ahij + T dz.
It is easy to see that the equivariance conditions mean that the image is an End (F)-
valued (0, 1)-form on M, as expected.

So it suffices to show that for each fixed pair (4, j) the operator 0/0zZ+ (e;—¢;)/(2%)
surjects from the L3 equivariant functions representing sections of L, _, onto the L3
equivariant functions representing L, ,,-valued (0, 1)-forms. For € = ¢; —¢; consider
the operator

0 €

Di=— + —, 15
‘ 8E+2E (15)

on functions over CP'. We consider D, restricted to the L2 completion of the equiv-
ariant functions with equivariance condition specified by x = x; — z; and denote the
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resulting operator by D. .. (Notice that = 0 only if e = 0.) It follows from corol-
lary 4.4 that D, , defines a bounded linear operator from L3 equivariant functions
to L? equivariant functions.

If e = 0 then Dy, = 0. Now 0 is Fredholm and its index is given by the orbifold
Riemann—Roch theorem (Kawasaki 1979); it is 1 if = 0 and 0 otherwise. The kernel
of @ over CP' consists of rational functions but these can only be L2 everywhere if
they are constant. However, the constant functions on CP! don’t descend to M unless
z = 0 and so Dy, has 1-dimensional kernel if z = 0 and is injective otherwise. It
follows that Dy, is surjective.

Now suppose that € # 0 (and so z # 0). By proposition 4.3 D, — @ is compact
and so D, , is Fredholm and of the same index as 0. As above, the orbifold Riemann—
Roch theorem gives the index of @ on L, as 0. Therefore D. . is surjective provided
it is injective.

We consider the problem over CP': if s € ker 136 then we substitute s’ = sr¢ and
find that ds’ = 0 and so s’ is rational. As before, s being L2 forces s’ to be 0. So
D, ., is injective if € # 0 and hence surjective. This concludes the proof. |

Remark. The last paragraph of the proof brings out the basic fact about zeros
of the local singular d-operator (15): if s € ker 136, smooth except possibly at the
marked point, then s = s'r7¢, where s’ is holomorphic except possibly at the marked
point, where it is meromorphic.

Corollary 5.2. Each (G¢)?-orbit of L? singular connexions on F contains a smooth
singular connexion.

Proof. For this proof we adapt lemmas 14.6-14.8 of Atiyah & Bott (1982). How-
ever, to avoid problems with the model singularity we consider a singular connexion
in the form given by proposition 5.1 over some neighbourhood of the marked point
and consider only the subgroup of (G¢)? consisting of automorphisms which are the
identity over this neighbourhood. In this restricted context we get no problems with
the model singularity and lemmas 14.6-14.8 generalize easily. |

There is an alternative proof of proposition 5.1 as a corollary of proposition 5.4,
below.

We do not claim an analogue of lemma 14.9 of Atiyah & Bott (1982) for singular
connexions: indeed, one would not expect such a result given that the clutching
construction and hence A%! are not smooth. However, we certainly can bootstrap
up to a certain point using corollary 4.4 and conclude that if g is L2 and intertwines
two smooth singular J-operators, then g is smooth away from the marked point and
L2 there, provided kq is sufficiently large (we need ko > k + 1 and sufficiently large
with respect to certain elliptic constants cs, ..., c).

Since the model singularity arises from the singular clutching map ¢ of (6), we
do get a version of lemma 14.9 of Atiyah & Bott (1982) by translating back to the
weighted bundle, F, as follows. If we have two singular d-operators which are not
necessarily smooth but come from smooth objects on F, i.e. from two holomorphic
structures on F, tgt~! is smooth away from the marked point and, modulo smooth
weighted changes of frame, is meromorphic at the marked point. However, as in the
proof of proposition 5.1, because g is L3 in z, {tgt~'};; must have a removeable
singularity at the marked point and even a zero there if A; < A;. In other words
tgt~! is a (smooth) weighted automorphism.
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Consider now a smooth singular connexion on F locally given in the form of
proposition 5.1. The associated singular d-operator has the form d — A% locally and
clearly the result of clutching by ¢ is to produce a smooth J-operator on F' locally
like 0, i.e. a holomorphic structure such that the fixed trivialization is holomorphic.
Now this defines a bijection between the L? singular d-operators on F modulo L3
automorphisms and holomorphic structures on F' modulo weighted automorphisms;
to see this, a discussion of the germs of automorphisms, as previously outlined for
the proof of theorem 3.1, is necessary.

This last result can also be seen without constructing ‘good’ gauges by compar-
ing the holomorphic and unitary clutching constructions as follows. Suppose that
F is a Hermitian weighted bundle with a distinguished holomorphic structure and
use a holomorphic trivialization to define the holomorphic clutching construction
(using the clutching map s of (4)) (note that the holomorphic clutching construc-
tion depends only on the flag on F' and not the weights themselves and that both
constructions certainly produce the same smooth V-bundle, F'). We obtain a distin-
guished holomorphic structure on F' or initial d-operator, denoted ;. So we have
two clutching constructions of F' given by

5= (16)

and t and related by s~ 't. Considering s7't as an automorphism of F we find that
its effect on LY singular d-operators is to remove the model singularity. The resulting
O-operator on F may not be smooth but we will show that its orbit under a suitable

space of (Sobolev) automorphisms contains a smooth point.
Again we sum up the relation between the holomorphic and unitary clutching
constructions in a commutative diagram.

Unitary frame for F Weighted unitary frame for F’

go go
Y

‘Singular holomorphic’ frame for F Holomorphic frame for F'

st

Holomorphic frame for F

Recall that ¢; = z; — A;n. Now, by (10), there exists 0 < § < 1 such that

le;] < 5(1—6) foralli. (17)
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Choose and fix ¢ with
2
2<qg< —— 18
1< 15 (18)
(the reason for this condition will become apparent in the proof of lemma _53) For ¢
fixed as above, we want to show that the result of acting on an L? singular d-operator
by s lgot is an L7 d-operator.
Lemma 5.3. If g satisfies (18) then, on F, st got takes L? singular O-operators to
L7 §-operators and L2 automorphisms to L automorphisms. Under this correspon-

dence the 5_—operator of the initial singular connexion Aq is mapped to the initial
0d-operator Oy.

Proof. We factorize s~*got = (s~ 't).go. By lemma 4.1 and corollary 4.5 gy acts on
the L2 singular connexions and L% automorphisms. It remains to consider the action
of

re 0
st =
0 re

around the marked point. Suppose that a®! is a local L? endomorphism-valued (0, 1)-
form such that in the ‘singular holomorphic’ frame our singular d-operator is given
by 9 — A% + a%!. The action of s~'t is then
0— A" 4% = 0+ s Ot s) — s A T s + s ™ T s
=0+ s 'ta®'t s,
The claim that Ay and dy correspond is now clear.

To see that s 'ta®'t~'s is L9 we note that, using (17) and (18), r¢ =% is LIt
for suitably small ¢ > 0. Since a®! is L? it is certainly L9(9+9/¢, Then by Holder’s
inequality ||a27’-1r‘i_€f||“ is finite.

Similarly, consider {s tgt 's};; = g;jr“~%. If ¢; = ¢; then there is no problem.
On the other hand, if €; # €;, we can write

€ —€;j ‘

€;—€j5 |

oo [ Vigi)re|

lgur bt

g’él’ /,"61 —€j
r

Lo S ||9¢j7“ Lo
Now, since g;;, Vg;; and g;;/r are all L? (the latter by proposition 4.3), we can apply
the argument given above for a®! to obtain the desired result. Note that, because
q > 2, the LT automorphisms form a Lie group acting smoothly on the L? d-operators
(compare corollary 4.5). [ |

Proposition 5.4. A (G°)2-orbit of L? singular connexions on F determines a

holomorphic structure on F', unique up to the action of G¢. Conversely, a holomorphic
structure on F' determines an L3 singular connexion, unique up to the action of (G¢)?.

Proof. By lemma 5.3 the data determines an orbit of L9 J-operators (with ¢ as
in (18)) under the action of the L{ automorphisms and we claim that each such
orbit contains a smooth point, unique up to smooth isomorphism, as required. To
prove the claim we simply note that lemmas 14.6-14.9 of Atiyah & Bott (1982) apply
immediately (the crucial point is that 1 —2/q > 0, i.e. ¢ > 2, so that the Sobolev
multiplication lemma holds).
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The proof of the converse is similar to the proof of lemma 5.3: we consider a
smooth O-operator which is locally d + %' and a smooth automorphism ¢ and
estimate Hb?;%ef_ei 2 and [lgir =< ;. As in lemma 5.3, the case ¢; = ¢; presents

b 2

no problem so we suppose that €; # €;. Then g,;/r? is L3 by proposition 4.3, r?*+¢i—¢
is also L3 and the product is LZ by the Sobolev multiplication lemma. Similarly,
by;'/r® and 71+~ and their product are all LY (we avoid L2 as it is borderline for
the Sobolev multiplication lemma). [ |

Remark. As mentioned above, proposition 5.4 leads to a simple proof of proposi-
tion 5.1 from the corresponding fact for smooth d-operators on V-bundles, i.e. the
Newlander—Nirenberg theorem.

By virtue of proposition 5.4 we can pass from (unitary) L? singular connexions
on the Hermitian copy of F' constucted via the unitary clutching construction to
holomorphic structures on the copy of F' constucted via the holomorphic clutching
construction. The latter correspond to parabolic structures on F by theorem 3.1.
(Strictly, theorem 3.1 applies when F' is given rational weights z;/n,...,z,/n but
of course parabolic isomorphism classes of parabolic structures depend only on the
holomorphic and quasi-parabolic structures and not the weights themselves.)

We may sum up by noting that, as a corollary of proposition 5.1 (or proposition 5.4)
we have bijections

AL(F) _ A()
(G)P(F)  Ge(F)
A(F)
7 Gaal®)
and, by corollary 5.2, the natural map
o AE)
= lgep ()

is surjective. (Here, of course, A4(F) denotes singular 5—operat~ors, A(F) and A(F)
denote smooth d-operators or holomorphic~structures and G°(F') denotes the group
of smooth automorphisms—A2 (F'), (G¢)?*(F) and GE;(F) are as before.)

weli

(b) Local forms of Yang—Mills connexions

Given a Hermitian weighted bundle F' with a stable parabolic structure we will
produce a Yang—Mills singular connexion on the V-bundle F' and we would like to
carry this solution back to F' and give suitable regularity and uniqueness results
there. The required results follow from the fact that in a radial gauge the vanishing
that follows from equivariance ensures that a Yang—Mills singular connexion has a
very particular form; see proposition 5.6 and compare lemma A.1 of Jeffrey (1992).
(This argument is certainly particular to two real dimensions.)

Our first problem is that the Yang-Mills condition on F is defined with respect
to an orbifold Riemannian metric. In order to adapt our result to the parabolic bun-
dle we would first like a version which uses a smooth Riemannian metric. Near the
marked point we have a uniformizing coordinate neighbourhood U with uniformizing
coordinate z and a corresponding coordinate neighbourhood U with local coordinate
w = z™. Suppose that we have an orbifold Riemannian metric and a smooth Rieman-
nian metric, both normalized to unit volume. Denote the resulting Hodge stars by
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*, and x,, respectively. The V-bundles of 0- and 2-forms both have trivial isotropy
and so the ordinary 0- and 2-forms can also be considered as orbifold forms. Hence
we can compare the actions of *, and *,, on 2-forms. For example, if we suppose that
locally the metrics are dz ® dz and dw ® dw then an easy calculation shows that for
a local 2-form w

s, w = 22D (kW) and w, 1=n"2r 2D (4, 1). (19)

Given a Yang—Mills singular connexion on F we would like to prove that a sin-
gular connexion which is Yang—Mills with respect to the smooth metric exists on F.
(Here we can work with model singularity A, for any x.) To do this we simply use
orbifold Hodge theory to construct an appropriate automorphism of the V-bundle
which will take a singular connexion which is Yang—Mills with respect to the orbifold
Riemannian metric into the required form. (This is much like the rank-1 case of the
Narasimhan—Seshadri theorem.)

Proposition 5.5. If A is a k-singular connexion on F which is Yang-Mills with
respect to the orbifold Riemannian metric then there exists a smooth positive real-
valued function g : M — R*, such that (gI)(A) is Yang—Mills with respect to the
smooth Riemannian metric.

Proof. Recall that both metrics are assumed normalized to unit volume. By hy-
pothesis we have that

Fy = 27ip(r)(x.1)1
and we are required to construct a connexion with curvature
—2mip(k) (xu 1)1
Set

w = =2mip(r){(*u1) — (x.1)}
in orbifold deRham cohomology. Note that w is cohomologous to zero and hence ex-
act. The result will follow if we can construct a positive real-valued g with d((gl)(A)—
A) = wl, so that Fiypa) = —2mipu(k)(*,1)I. For gI (a particularly simple type of
bundle automorphism) we have

(gI)(A) — A= (g7'9g + g0g~")I
— (0-9)(ng)1,
so that we need to solve
w = (00 —99)(Ing)
= 209(In g). (20)

Now we use a little (orbifold) Hodge theory. Let G be the Green’s operator of the
orbifold Laplacian, A. Since w is exact we have that w = AGw. Now, on 2-forms the
Laplacian is just 2100x,. It follows that a solution to (20) is given by setting

g = exp{i*, Gw}
and the proposition is proved. [ |

Suppose that A is an L? k-singular connexion on F, Yang-Mills with respect
to the smooth Riemannian metric. In fact there is always a gauge in which A is
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smooth except at the marked point. This follows in the standard way by our local
gauge-fixing result proposition 4.8 and a bootstrapping argument. By our remarks
on regularity in § 5 a it is clear that a limited bootstrapping argument can be applied
at the marked point: for instance we can certainly choose ko so that the singularity
there is, at worst, L3 and hence continuous (modulo the model singularity).

Now we place A in radial gauge. To this end we work locally in polar coordinates:
although these are not well adapted to working with Sobolev spaces and elliptic
estimates they are natural for discussing equivariance conditions and the vanishing
at the marked point that these imply. Write A in the local trivialization as

A=d— A, +a"0dz+a"' dz
=d— A, +a,dr + apdb,

where a, = e%a’" e % gy =i(2a0 — za®).

We search for a change of gauge which will eliminate the radial component of the
connexion matrix. This means finding a gauge transformation g such that dg/0r +
arg = 0. For fixed 6, we consider this equation along each line segment {te!? :
t € (—1,1)}: we obtain an ordinary differential equation for g(t) with continuous
coefficients (both @' and a®! are continuous and, by equivariance, vanish at the
origin; therefore a, is also continuous and vanishes at the origin). Hence, given the
initial condition g(0) = I, there is a unique solution for each @ which also satisfies
the equation 0(g*g)/0t = 0 and so is unitary. For each 6, the solution is continuously
differentiable in ¢ at the origin and, since the same is true for any transverse line,
we see that g is at least C' there (and smooth elsewhere). Moreover the solution is
clearly equivariant. Of course, our hope is that g € G2, i.e. g is L2; we will eventually
see that this is the case.

Now, the result of acting on A by g is a connexion which is locally

g(A) =d — A, + a} b,

where agdd = g7 '[g, As] + (9_1% + g_laeg> de,

i.e. g(A) is in radial gauge. The most that we claim a priori for this connexion is that
ap is continuous and vanishes at the origin: the contribution of the term g~*[g, 4,] to
ap is actually C' (the singularity of A, is in the df) and the contribution of the other
terms is continuous (as A is); the equivariance condition ensures that aj vanishes at
the origin.

Since g is unitary g(A) is still Yang-Mills (with respect to the smooth Riemannian
metric): let us consider the Yang-Mills equations. We suppose, without loss of gen-
erality, that the metric is locally like dw ® dw = n*r*"~1 dz ® dz near the marked
point. Therefore, in our radial gauge the Yang-Mills equations are just

1 Day,
r Or

= —27ip(r)n?r¥=V].
With the initial condition aj(0) = 0 this has the unique solution
ay = —mip(k)(n/2)r* 1,
locally. (Note that without the initial condition, which comes from equivariance, we
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could not determine aj completely: for one consequence of this see the second remark
following proposition 4.9.) Now

aydf = —Lmip(k)nr*"1d0 = —Inp(r)nr®""VI1(zdz - 2 dz)

= — (k) (w dw — w dw)

and so g(A) is a smooth singular connexion.

Finally we consider regularity of g: since g is L? and maps between an L2 singular
connexion and a smooth one the bootstrap argument shows that it is certainly L3.
Combining the above discussion with proposition 5.5 we have the following result.

Proposition 5.6. Let A be an L? k-singular connexion which is Yang—Mills with
respect to a given orbifold Riemannian metric on M. Then there is a gauge trans-
formation g € G? such that g(A) is a smooth k-singular connexion, Yang-Mills with
respect to a given smooth Riemannian metric on M and locally of the form,

g(A) =d — A, — np(r)nr®" "V I(zdz — 2 dz),

in our fixed unitary trivialization (if the metric is supposed to be like dw ® dw near
the marked point).

(¢) The proof of the theorem

In this subsection we at last prove our main theorem. As a first step we prove
the following theorem on F'; a further brief discussion then leads to the main result,
theorem 2.1.

Theorem 5.7. Let F' be a Hermitian weighted bundle and F= Fnzlz a ko-
approximation to F'. Let F be a stable parabolic structure on F' and let Ay be the
corresponding initial L? singular connexion on F'. Then, provided kg is sufficiently
large, there exists g € (G°)*(F) such that g(Ao) is a smooth singular connexion,
Yang—Mills with respect to a given smooth Riemannian metric and locally of the
form

g(A) =d— A= tnp(F)nr*" VI (zdz — zdz),
in our fixed unitary trivialization (if the metric is supposed to be like dw ® dw near
the marked point). Moreover, g is unique up to the action of G*(F).

Our proof is based on the intuitive idea that a solution to the Narasimhan—Seshadri
problem for a parabolic bundle with irrational weights can be obtained as the limit
of solutions for the same bundle with rational weights; these solutions are obtained
from the Narasimhan-Seshadri theorem for V-bundles. (A proof closely following
Donaldson (1983) is also possible.)

As before, let F' be a Hermitian weighted bundle with irrational weights, equipped
with a stable parabolic structure, . Now choose a sequence of rational approxima-
tions xg'”/nj, j=1,2,..., to the weights \; such that

(i) for each j the xE‘” /n;s have the same pattern of equalities and inequalities as
the A;s; ~

(ii) Fy = Fnl;x(ll)’””x;l) is a ko-approximation to F with ko large enough that
proposition 4.10 applies;

(ili) n; divides n;4q (strictly) for all j > 1;

(iv) (@ /n;) = M| < 1/2n; for all j > 1
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(v) F remains parabolically stable when the \;s are replaced by the xgj ) /n;s, for
all j > 1.
(The last condition can certainly be satisfied by the argument of Mehta & Se-
shadri (1980) discussed in §3b.) The third and fourth conditions together show that

xgj)/nj —MNasj—oocforalli=1,...,[. Fori=1,...,1, set egj) = Ej) —Ainj. We
writg n=n, T, = xgl) fori=1,...,1 and F for Fy: we will be doing our analysis
on F (over an orbifold M = M;). Notice that on F' we have the initial singular

connexion Ag of §4.
Define a singular automorphism of F', h;, by setting

) 7,
|w|€1 /1 0

0 ot/

in the weighted unitary frame near the marked point, with h; smooth elsewhere. Then
if we act on the weighted Hermitian metric by h; we obtain a weighted Hermitian

metric with respect to the weights xgj ) /n;: denote the resulting Hermitian weighted
bundle with these weights by F}.

Of course Fj still has a stable parabolic structure defined by F and the weights.
Let Fj — M; be the Hermitian V-bundle obtained from F} via the weighted unitary
clutching construction with clutching map (analogous to (6))

t]' = 3 (22)

where z; is the local uniformizing coordinate on M; with order of isotropy n;. (Since
F; has rational weights the unitary clutching map (22) and the holomorphic clutching
map (16) are the same; the two constructions differ only by the frame chosen to
clutch to.) Notice that ¢; is meromorphic and so 0t; = 0: applying theorem 3.1
and the argument of lemma 4.1 we obtain an L? initial connexion on F; (with no

model singularity) in the (G°)?(F})-orbit of a stable holomorphic structure. The
Narasimhan—Seshadri theorem for V-bundles now gives us a Yang—Mills connexion
in the same orbit. By proposition 5.6 we can suppose this connexion is smooth,
Yang-Mills with respect to a given smooth Riemannian metric on M (supposed to
be like dw ® dw near the marked point) and of the form

‘T2-(nj_1)I(Ej dZ]' - Z]' dE]-), (23)

2%

d — zmu(Fy)n

locally in our fixed unitary trivialization.
Recall that F; has the same holomorphic structure as I’ but that the weighted Her-

mitian metric is altered by applying the singular automorphism hj, defined by (21).
Again we can summarise the relations between the various frames in a commutative
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diagram.
. tj
Unitary frame for F} > Weighted unitary frame for F}
t™hyt; hy;

Weighted unitary frame for F'

Unitary frame for F

By construction, the weighted unitary frames of F' and F} coincide, of course, and,
away from the marked point, h; is a unitary map between them. The result is that,
again away from the marked point, t~*h;t; is a unitary map from Fj to F'.

Since z = z;”/", we have {t~Thjt; b = S(z;/r;) =% Tmi/m and the action of
t~'h,t; on a connexion of the form (23) on F; gives us a (unitary) singular connexion
Aj on F of the form,

Aj=d—Na—grn/n,) — %ﬂu(Fj)nrz("—“I(Edz — zdz),
where z = (z1,...,2;) and 2\ = (xgj), e ,xlm). Thus we obtain a Yang—Mills con-
nexion A; with (z—zn/n,)-singularity on F. Since 2’ /n; — X; and u(F;) — u(F)
as j — oo curvature cannot concentrate at points and we can apply proposition 4.10
to the sequence {A;} to conclude that, modulo G(F), there is a subsequence with
a weak limit A.,. Moreover, A, is clearly Yang-Mills and has e-singularity.

It remains to show that A, is in the same orbit as the initial singular connexion Ag.
To do this we apply the arguments of §5a: the Yang—Mills connexions obtained on
the F} all represent the same (stable) orbit in A(F')/GS.;(F') (the weighted Hermitian
metric varies with j but not the quasi-parabolic structure). Passing back to the V-
bundle F' using the holomorphic clutching map s, we obtain a sequence of smooth
0-operators which locally have the form,

0; =0+ trp(F)nr*n=V1zdz and Ooo = 0+ 2mp(Fynr?"=V 1z dz.

By the discussion in § 5 a all, except possibly d, are in the same orbit, in A(F)/G(F)
and this orbit is stable by theorem 3.1.

Now (modulo taking subsequences and L3 changes of gauge) A; — A, weakly in
the sense of Li-connexions with variable model singularity. Near the marked point
we have 0o — 0; = $m{p(F) — p(F;)}nr?"=Y 12 dz so that the weak convergence is
preserved (using any Hermitian metric on F ) and we can assume 5]- — Ooo, weakly
in L3.

Exactly as in the proof of lemma 1 of Donaldson (1983) we obtain a non-zero weak
limit L2 endomorphism, g.., intertwining 9y and 0. Now, as usual, the problem is
to show that g, is an automorphism but in our case this is a triviality. Because A,
is Yang—Mills the corresponding parabolic structure on F' and holomorphic structure
Ooo Oon F' are semi-stable. So g, intertwines a stable and a semi-stable holomorphic
structure on F' and so, by a standard property of (semi-)stable V-bundles, go, must
be an automorphism. It follows, again from §5a, that Ay and A also lie in the
same (G¢)%-orbit, as required. This concludes the proof of theorem 5.7.
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Remark. It is possible to show that the limit connexion lies in the same orbit by
performing the analysis of lemma 1 of Donaldson (1983) on the singular connexions

Aj, directly in the unitary frame on F. (Notice then that the intertwining automor-
phisms change the model singularity and so they must be less regular than L3 in this
frame, by corollary 4.5.) We will use this approach in the proof of theorem 6.1.
Being diagonal near the marked point, the connexion constructed in theorem 5.7
clearly behaves well with respect to the unitary clutching map ¢, of (6), and so
carries back to a (Yang-Mills) weighted unitary connexion on F. As the singular

O-operators on F' are in the same (G¢)2-orbit, our discussion in §5 a implies that on
the weighted bundle the two weighted connexions are carried one to the other by a
weighted automorphism.

Our main results (theorem 2.1 and proposition 2.2) follow, uniqueness being a
simple consequence of that in theorem 5.7.

6. Parabolic Higgs bundles

In this section we apply the ideas which we have developed for dealing with the
Narasimhan—Seshadri theorem on parabolic bundles to the analogous theorem for
parabolic bundles with a ‘Higgs field’ interaction term. Our prototype theorem in
this case is due to Hitchin (1987, theorem 4.3) and we obtain results similar to those
of Simpson (1988, 1990) (see also Konno 1992).

First we discuss the correspondence between Higgs V-bundles and parabolic Higgs
bundles with rational weights. Let £ — M be a holomorphic V-bundle and let
¢: & — £ ® Ky be a holomorphic map, where Ky denotes the canonical V-bundle.
Then ¢ is a Higgs field on £ and the pair (£,¢) is a Higgs V-bundle. As usual,
stability of Higgs V-bundles is defined using only the ¢-invariant sub-V-bundles.

If F is the parabolic bundle associated to £ then we want to check that ¢ carries
across to a parabolic Higgs field on F: since a Higgs field is a (1,0)-form valued
endomorphism a little care needs to be taken. Using a holomorphic trivialization
with coordinates which respect the V-structure, about the marked point we have a
Taylor series expansion analogous to (5):

$iydz = { Z$i‘Ij—1¢;j(zTL)dZ if z; > x;,

nta;—x;—1 4/ n : (24)
e gl (2") dz if z; < xj,

where the ¢}, are holomorphic functions. To transfer this across to F we simply
conjugate by the clutching function s defined by (4); at the marked point itself we
will have a singularity which may or may not be removeable. We obtain

{S¢S_1}ij dz = 2% _“qﬁij dz
_ { i (w)dw /nw if x; > xj,
i (w)dw/n if z; < xj,

(25)

which is precisely a parabolic Higgs field.

This defines a correspondence between Higgs V-bundles and parabolic Higgs bun-
dles (with appropriate parabolic weights). One can easily check that the invariant
subbundles and hence the stable objects correspond. One therefore has an anologue
of the result of Furuta & Steer (theorem 3.1) and also of the results of Mehta &
Seshadri (1980, §2) discussed in § 3b. Further details can be found in Nasatyr (1991)
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and Nasatyr & Steer (1995); the latter particularly for results on the existence of
stable Higgs V-bundles.

Now suppose that F' is a Hermitian weighted bundle equipped with a parabolic
Higgs bundle structure. Under the unitary clutching construction of §4 b we obtain a
Hermitian V-bundle F with an initial singular connexion Aq (compare corollary 4.6).
From the parabolic Higgs field, exactly as in lemma 4.1, we obtain an Lio_ 1, map from

F to F® Ky which is a zero of the singular g—opemtor~ induced by the initial singular
connexion. If A is an L? singular connexion and ¢ : F — F ® Ky an L? zero of the
induced singular d-operator then the pair (A, ¢) is called an L? singular Higgs pair. A
k-singular Higgs pair is said to be Yang-Mills-Higgs if Fa+ ¢, ¢*] = —2rip(k)(x1)1.

We prove the following theorem, the analogue of theorem 5.7 for L? singular Higgs
pairs.

Theorem 6.1. Let I be a Hermitian weighted bundle and F= F,,,,;wl ,,,,, z, a ko-
approximation to F. Let (F, ¢) be a stable parabolic Higgs bundle structure on F' and
let (Ag, ¢) be the corresponding initial L? singular Higgs pair on F. Then, provided
ko is sufficiently large, there exists g € (G¢)?(F'), smooth away from the marked point,
such that g(Ao, ¢o) is Yang—Mills—Higgs (with respect to a given orbifold Riemannian
metric) and smooth away from the marked point. Moreover, g is unique up to the
action of G2.

Proof. We adopt the notation of § 5 ¢, taking a sequence of rational approximations
xﬁj)/nj, j=1,2,..., to the weights A;. The orbifolds ]\ij can always be supposed to
have negative orbifold Euler characteristic in any case where stable parabolic Higgs
bundles exist by taking n = n; large enough. An orbifold of negative orbifold Euler
characteristic is always finitely orbifold covered by a smooth Riemann surface (Fox
1952). Applying the equivariant existence result of Simpson (1988), we obtain an
element g; € (G°)?(F}) taking the initial data on F; — M, to a smooth Yang-Mills—
Higgs pair. Moreover, the proof of Simpson’s theorem (particularly his propositions
5.3, 6.6 and lemma 7.1) shows that

sup [g;| < Nj.
X

The constant N; a priori depends on j but closer examination of the proof shows that

it can be taken to depend only on ¢;(F}) and certain elliptic and Sobolev constants:
these are all bounded in j and so there is a uniform constant, N.

Transferring the solutions to F' = Fj, we obtain a sequence of singular Yang-
Mills-Higgs pairs (4;, ¢;) on F, A; having (z — z9)n/n;)-singularity. We need some
regularity for these in order to apply proposition 4.10 but we can’t apply the argu-
ments of § 5 b to obtain specific local forms at the marked point. Instead we note that
the result of conjugating a smooth matrix by ¢t ~'h;t; is L} for any 1 < p < 2. Hence
the A;s and ¢;s are LY.

On F we can still apply the bound Supx\ (py 195] < N, as t~'h;t; is unitary, to
conclude that the L? norms of the ¢;s obey a uniform upper bound (indeed, the
same is true for the L?? norms). Arguing exactly as in Hitchin’s proof we see that
the L2-curvature of the sequence {A;} cannot concentrate and so the same is true a
fortiori for the L? curvature. (Here we need to apply a Weitzenbock formula and so
we need to note that all the terms involved are L? even though the A;s and ¢;s are
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only LY, since conjugation by ¢~'h;t; preserves L?. We also need, as above, that M
has negative orbifold Euler characteristic.)

Hence we can apply a version of proposition 4.10 for L} singular connexions (which
holds if p is sufficiently close to 2; see the third remark following proposition 4.9) to
conclude that (modulo L} gauge transformations and after passing to a subsequence
and relabelling) there is a subsequence with a weak limit A, in LY, with e-singularity.
Since we have elliptic equations 5,4]. ¢; = 0 with LY coefficients and L?’ bounds on
the A;s (as L} < L?P is compact) and the ¢;s, we can also conclude that there is
a weak limit ¢, in LY. By continuity (A, ¢oo) still satisfies the Yang-Mills-Higgs
equations.

Now we can apply the argument of lemma 1 of Donaldson (1983) to conclude
that there is a weak limit L7-endomorphism ¢ intertwining (Ag, ¢g) and (Aso, oo )-
Exactly as in §5 ¢, we conclude that g is in fact an automorphism.

By local gauge-fixing and bootstrapping (Parker 1982, theorem 5.3) we can suppose
that the pair (Aso, Poo) is sSmooth everywhere, except at the marked point, where it
is, say, L} (modulo the model singularity) and hence g is L%, which implies L. H

Now we carry the result on the auxiliary V-bundle F (i.e. theorem 6.1) back to
the weighted bundle F'. Ideally, we might hope for a result analogous to theorem 2.1,
which gives the existence of a (smooth) weighted automorphism solving the problem.
However, the results of Simpson (1990) suggest that this is too much to hope for in
general; in this respect the case of parabolic Higgs bundles is certainly deeper than
that of parabolic bundles. However, we are able to prove the existence of a weighted
automorphism which is smooth away from the marked point and C' everywhere and
hence theorem 2.3.

Let go be as in corollary 4.6 (note also the remark following that result). Either by
the Gram—Schmidt procedure or by an implicit function theorem argument we can
write ggo ' = hg’ with h and ¢’ both L2, h unitary and g’ upper-triangular. Since
h is unitary there is thus a gauge in which, locally, the singular connexion of the
Yang-Mills-Higgs singular pair is given by acting on d — A by an upper-triangular
automorphism and thus the associated singular d-operator is also upper-triangular.

The point of gauge-fixing so that the automorphism and singular d-operator are
upper-triangular is, of course, that these will then behave well with respect to the
clutching map t: in fact the result of conjugating an upper-triangular matrix which is
continuous in z by t is clearly continuous in w. Moreover, since the resulting weighted
automorphism is a C° solution of a first-order elliptic differential equation with C°
coefficients it is certainly C*.

Thus we have obtained as a solution a weighted automorphism which is smooth
away from the marked point and C* (in w) at it. We might ask whether it is possible,
in fact, to gain any greater regularity at the marked point: unfortunately the answer
is no. Because 8/0w = (nz"~')71(8/0z) and we have, at most, control of the first
ko — 1 derivatives in z (§5a), with kg — 1 < n/2 by (9), we clearly cannot hope to
control the second derivative in w.

Notice that even if we allow weighted automorphisms which are only C! at the
marked point then lemma 4.1 still holds. Thus, for instance, uniqueness on the
weighted bundle follows from uniqueness on the V-bundle and we have proved the-
orem 2.3.

We can rephrase the theorem as follows (at the expense of broadening our concept
of a weighted Hermitian metric). We fix the initial weighted Higgs pair and consider
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the problem of varying the weighted Hermitian metric so that the given pair becomes
Yang—-Mills—-Higgs; this is entirely equivalent to the problem we have been considering
up to this point. Then theorem 2.3 simply says that we can find a suitable metric
which locally has the form,

|w[2/\1 0
g 9,

0 lw| 2

in coordinates which respect the flag structure, where, unlike in (3), g is now only
required to be C' at the marked point. In this form it is apparent that what we
have is an example of a Hermitian metric over the complement of the marked points
which is ‘harmonic’ and has ‘tame’ growth at the marked points (Simpson 1990).

Much of this work was done during a year that B.N. spent as a Post-Doctoral Fellow at the Uni-
versity of British Columbia: he thanks David Austin and Dale Rolfsen for their hospitality and
NSERC of Canada for financial support during that time. He is currently the Sir Michael Sobell
Research Fellow at Peterhouse, Cambridge. B.S. thanks Giuseppe Tomassini and the Scuola
Normale Superiore di Pisa for hospitality during the time that this work was initiated. Both
authors thank the referees for their insightful and constructive comments, which considerably
improved the paper.
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